ID | URL | MAKE | MODEL | F_NUMBER | EXPOSURE_TIME | EXPOSURE_MODE | EXPOSURE_PROGRAM | METERING_MODE | LENS | FOCAL_LENGTH | ISO | GPS | DATE_ORIGINAL | SOFTWARE | ORIENTATION | LABELS | LABELS_SCORE | EXPLICIT_CONTENT | RANK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxxxxx | xxxx | xxxxxxxx | xxxx | xxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxx | xxx | xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | |||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxx | xxxxxxxxx | xxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxx | xxxx | xxxxxxxx | xxxxxx | xxx | xxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | ||||||||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxx | xx | xxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxxxxx | xxxx | xxxxxxxxx | xxxxxx | xxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxx | xxxx | xxxxxxxxx | xxxx | xxxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | xx | xxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | |
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxxxxxx | xx | xxxxxxxxx | xxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | xx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | |||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxx | xx | xxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxx | xxxx | xxxxxxxxxx | xxxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx |
Attribute | Type | Example |
---|---|---|
ID | String | 58402c16f34fbfc0cfef1d402b0deb03 |
URL | String | https://photos.gurushots.com/unsafe/400x0/50f9a21515b0280eb898905e42aaf7e5/3_58402c16f34fbfc0cfef1d402b0deb03.jpg |
MAKE | String | NIKON CORPORATION |
MODEL | String | NIKON D5200 |
F_NUMBER | String | F9.5 |
EXPOSURE_TIME | String | 1/45 sec |
EXPOSURE_MODE | String | Auto |
EXPOSURE_PROGRAM | String | Not Defined |
METERING_MODE | String | Multi-segment |
LENS | String | 18.0-105.0 mm f/3.5-5.6, AF-S DX VR Zoom-Nikkor 18-105mm f/3.5-5.6G ED |
FOCAL_LENGTH | String | 75.0 mm |
ISO | Integer | 400 |
GPS | ||
DATE_ORIGINAL | String | 2019-12-08 11:07:56.000000000 +00:00 |
SOFTWARE | String | Windows Photo Editor 10.0.10011.16384 |
ORIENTATION | String | horizontal |
LABELS | String | Building,Architecture,Person,Human,Arched,Arch,Silhouette,patron |
LABELS_SCORE | String | a:8:{s:8:"Building";d:0.9;s:12:"Architecture";d:0.9;s:6:"Person";d:0.9;s:5:"Human";d:0.9;s:6:"Arched";d:0.9;s:4:"Arch";d:0.9;s:10:"Silhouette";d:0.9;s:6:"patron";d:0.9;} |
EXPLICIT_CONTENT | ||
RANK | Float | 3576.5 |
Description
This dataset features over 160,000 high-quality images of patterns sourced from photographers worldwide. Designed to support AI and machine learning applications, it provides a diverse and richly annotated collection of pattern imagery. Key Features: 1. Comprehensive Metadata The dataset includes full EXIF data, detailing camera settings such as aperture, ISO, shutter speed, and focal length. Additionally, each image is pre-annotated with object and scene detection metadata, making it ideal for tasks like classification, detection, and segmentation. Popularity metrics, derived from engagement on our proprietary platform, are also included. 2. Unique Sourcing Capabilities The images are collected through a proprietary gamified platform for photographers. Competitions focused on pattern photography ensure fresh, relevant, and high-quality submissions. Custom datasets can be sourced on-demand within 72 hours, allowing for specific requirements such as particular pattern types (e.g., geometric, organic, textile) or stylistic preferences to be met efficiently. 3. Global Diversity Photographs have been sourced from contributors in over 100 countries, ensuring a vast array of visual patterns captured in various cultural, architectural, and natural contexts. The images feature varied environments, including fabric textures, wallpapers, cityscapes, fractals, and abstract art, offering a rich visual spectrum for training and analysis. 4. High-Quality Imagery The dataset includes images with resolutions ranging from standard to high-definition to meet the needs of various projects. Both professional and amateur photography styles are represented, offering a mix of artistic and practical perspectives suitable for a variety of applications. 5. Popularity Scores Each image is assigned a popularity score based on its performance in GuruShots competitions. This unique metric reflects how well the image resonates with a global audience, offering an additional layer of insight for AI models focused on user preferences or engagement trends. 6. AI-Ready Design This dataset is optimized for AI applications, making it ideal for training models in tasks such as pattern recognition, style classification, and image generation. It is compatible with a wide range of machine learning frameworks and workflows, ensuring seamless integration into your projects. 7. Licensing & Compliance The dataset complies fully with data privacy regulations and offers transparent licensing for both commercial and academic use. Use Cases: 1. Training AI systems for visual pattern recognition and classification. 2. Enhancing fashion and interior design models through textile and decorative pattern analysis. 3. Building datasets for generative models and style transfer applications. 4. Supporting research in visual perception, cultural studies, and computational aesthetics. This dataset offers a comprehensive, diverse, and high-quality resource for training AI and ML models, tailored to deliver exceptional performance for your projects. Customizations are available to suit specific project needs. Contact us to learn more!
Country Coverage
(250 countries)Data Categories
- Annotated Imagery Data
- Machine Learning (ML) Data
- Deep Learning (DL) Data
- Object Detection Data
Pricing
One-off purchase |
Available |
Monthly License |
Available |
Yearly License |
Available |
Usage-based |
Available |
Volumes
- image records
- 100K
Does this product fit your data needs?
Get in touch with our team to start unlocking your data solutions.
Request Information