ID | URL | MAKE | MODEL | F_NUMBER | EXPOSURE_TIME | EXPOSURE_MODE | EXPOSURE_PROGRAM | METERING_MODE | LENS | FOCAL_LENGTH | ISO | GPS | DATE_ORIGINAL | SOFTWARE | ORIENTATION | LABELS | LABELS_SCORE | EXPLICIT_CONTENT | RANK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxx | xxxxxxxxx | xxxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxx | xxxxxxxxx | xxxxxx | xxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | ||||||||||||||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxx | xxxxxxx | xxxxxx | xxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxxxxx | xxx | xxxxxxxxx | xxxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx | |||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | ||||||||||||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxx | xxxxxxxxxx | xx | xxxxxxxxx | xxxx | xxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxx | xx | xxxxxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxx | xx | xxxxxxxxx | xxxxxx | xxxxxx | xxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxx | ||
xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxxxxxxxxxx | xxx | xxxxxxx | xxxxxx | xxxxxx | xxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxx | xxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxx | xxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | xxxx |
Attribute | Type | Example |
---|---|---|
ID | String | 2fbbc888b7ad37e15d2b273e7486a01e |
URL | String | https://photos.gurushots.com/unsafe/400x0/60972d9ffe72f5acc0017ca43a6f5801/3_2fbbc888b7ad37e15d2b273e7486a01e.jpg |
MAKE | String | NIKON CORPORATION |
MODEL | String | NIKON D750 |
F_NUMBER | String | F2.8 |
EXPOSURE_TIME | String | 1/500 sec |
EXPOSURE_MODE | String | Manual |
EXPOSURE_PROGRAM | String | Manual |
METERING_MODE | String | Center-weighted average |
LENS | String | 70.0-200.0 mm f/2.8, AF-S VR Zoom-Nikkor 70-200mm f/2.8G IF-ED |
FOCAL_LENGTH | String | 200.0 mm |
ISO | Integer | 200 |
GPS | ||
DATE_ORIGINAL | String | 2022-08-06 14:28:54.000000000 +00:00 |
SOFTWARE | String | Adobe Photoshop 22.5 (Macintosh) |
ORIENTATION | String | horizontal |
LABELS | String | Accessories,Accessory,Jewelry,Diamond,Gemstone,Ring,Crystal,Necklace,Finger,Reflections |
LABELS_SCORE | String | a:10:{s:11:"Accessories";d:0.9;s:9:"Accessory";d:0.9;s:7:"Jewelry";d:0.9;s:7:"Diamond";d:0.9;s:8:"Gemstone";d:0.9;s:4:"Ring";d:0.9;s:7:"Crystal";d:0.9;s:8:"Necklace";d:0.9;s:6:"Finger";d:0.9;s:11:"... |
EXPLICIT_CONTENT | ||
RANK | Float | 3149.5 |
Description
This dataset features over 340,000 high-quality images of jewelry sourced from photographers worldwide. Designed to support AI and machine learning applications, it provides a richly detailed and carefully annotated collection of jewelry imagery across styles, materials, and contexts. Key Features: 1. Comprehensive Metadata: the dataset includes full EXIF data, detailing camera settings such as aperture, ISO, shutter speed, and focal length. Each image is pre-annotated with object and scene detection metadata, including jewelry type, material, and context—ideal for tasks like object detection, style classification, and fine-grained visual analysis. Popularity metrics, derived from engagement on our proprietary platform, are also included. 2. Unique Sourcing Capabilities: the images are collected through a proprietary gamified platform for photographers. Competitions focused on jewelry photography ensure high-quality, well-lit, and visually appealing submissions. Custom datasets can be sourced on-demand within 72 hours to meet specific requirements such as jewelry category (rings, necklaces, bracelets, etc.), material type, or presentation style (worn vs. product shots). 3. Global Diversity: photographs have been submitted by contributors in over 100 countries, offering an extensive range of cultural styles, design traditions, and jewelry aesthetics. The dataset includes handcrafted and luxury items, traditional and contemporary pieces, and representations across diverse ethnic and regional fashions. 4. High-Quality Imagery: the dataset includes high-resolution images suitable for detailed product analysis. Both studio-lit commercial shots and lifestyle/editorial photography are included, allowing models to learn from various presentation styles and settings. 5. Popularity Scores: each image is assigned a popularity score based on its performance in GuruShots competitions. This metric offers insight into aesthetic appeal and global consumer preferences, aiding AI models focused on trend analysis or user engagement. 6. AI-Ready Design: this dataset is optimized for training AI in jewelry classification, attribute tagging, visual search, and recommendation systems. It integrates easily into retail AI workflows and supports model development for e-commerce and fashion platforms. 7. Licensing & Compliance: the dataset complies fully with data privacy and IP standards, offering transparent licensing for commercial and academic purposes. Use Cases: 1. Training AI for visual search and recommendation engines in jewelry e-commerce. 2. Enhancing product recognition, classification, and tagging systems. 3. Powering AR/VR applications for virtual try-ons and 3D visualization. 4. Supporting fashion analytics, trend forecasting, and cultural design research. This dataset offers a diverse, high-quality resource for training AI and ML models in the jewelry and fashion space. Customizations are available to meet specific product or market needs. Contact us to learn more!
Country Coverage
(250 countries)Data Categories
- Annotated Imagery Data
- Machine Learning (ML) Data
- Deep Learning (DL) Data
- Object Detection Data
Pricing
One-off purchase |
Available |
Monthly License |
Available |
Yearly License |
Available |
Usage-based |
Available |
Volumes
- image records
- 200K
Does this product fit your data needs?
Get in touch with our team to start unlocking your data solutions.
Request Information